A Laser Focus on Math is Needed to Diversify the STEM Pipeline

The common denominator for entry into most STEM (Science, Technology, Engineering, and Mathematics) majors is the ability to successfully complete high level math courses. There is no getting around the requirement of these classes to obtain degrees in majors like engineering, computer science, and chemistry. There may not be one magic bullet to increase the diversity of students in STEM majors, but placing a laser-like focus on academic achievement in mathematics will help more students get past gatekeeper courses like Calculus.

Universities can design and/or expand summer bridge programs that focus extensively on building competency in mathematics for students who are interested in majoring in STEM fields, but lack a strong math background. They can also dedicate funding streams to support summer school learning opportunities for current students who need to catch up on math courses in order to stay on track to graduate within four years.

An accelerated level of peer-to-peer tutoring opportunities and other wrap around support services would also be helpful in these efforts. It will ultimately be up to the students to take the initiative to utilize these services. Students must cultivate the will and desire to help them get over the roadblocks that they will inevitably encounter in these courses. They need a consistent support system to encourage them to not get weaker, but to dig deeper.

Many students doubt themselves and lack confidence in their ability to successfully complete higher level math classes. These feelings cause some to give up on majors like engineering before they even begin. There should be efforts to build an academic swagger in them from an early age to help overcome the barriers that they may set for themselves.

There are an assortment of partnerships and varying mechanisms of engagement that higher education institutions have with K-12 educational systems. Most engagement of any kind should be applauded and supported. There is, however, a need to strategically target these efforts. Some colleges and universities have random and sporadic engagement that may not be focused on the most pivotal areas of need.

A lot of the programming in the area of STEM seems to be around the area of general exposure. This is crucial and is very much needed to help generate awareness of STEM careers for students who may not be aware of certain occupational avenues, but generating interest without helping to develop the required math competency is a losing formula.

In the realm of education at the secondary school level, there is also a need to put an extra focus on achievement in mathematics. All subjects in school have value and are generally worthy of study. Young people should strive to make A’s in every subject. Unfortunately, too many students underachieve in classes beyond basic Algebra. These courses end up being stumbling blocks that many students don’t seem to get past.

The consequence of this is that the choice of majoring in a high growth STEM field when they reach a college or university is taken off of the table due to a lack of math competency. The long term impact of this is a furthering of an occupational segregation that cloisters large numbers of minorities into lower wage occupations.

There is additionally a tremendous need for highly qualified and motivated math teachers at the elementary school level. Different models for increased compensation may need to be explored to attract the most competent and capable math teachers into classrooms. There is a premium on talented educators who can effectively disseminate information and instruction that is connected to tangible careers. It is important for the real world application of abstract mathematical concepts to be explicitly highlighted and reinforced.

Communities can also assist with placing an enhanced priority on high-level math achievement. Higher education institutions can assist community organizations with creating avenues for people who have expertise in these subjects to convey their knowledge to students. This can occur at after-school programs, sports camps, and summer activities hosted by universities or other entities. This exposure and support can be a spark and motivating force for students to apply themselves more to master higher level math content.

If colleges and universities are sincere about increasing the diversity of the students who are entering STEM majors, then they must leverage their capacity and expertise to increase the math competency of their prospective and current students. Institutions should continue to devise ways to cultivate the keys to open the mathematical gates that prevent many students of color from graduating with degrees in STEM fields.

Marcus Bright, Ph.D. is a Scholar and Activist

This post was published on the now-closed HuffPost Contributor platform. Contributors control their own work and posted freely to our site. If you need to flag this entry as abusive, send us an email.