We're Pretty Much All Tripping, All the Time

We're hallucinating reality all the time -- but we only take notice when our hallucinations fail to make accurate predictions; when we think we're certain of something that's actually not so certain, and our brains have to hunt down new information in order to make better predictions.
This post was published on the now-closed HuffPost Contributor platform. Contributors control their own work and posted freely to our site. If you need to flag this entry as abusive, send us an email.

TED and The Huffington Post are excited to bring you TEDWeekends, a curated weekend program that introduces a powerful "idea worth spreading" every Friday, anchored in an exceptional TEDTalk. This week's TEDTalk is accompanied by an original blog post from the featured speaker, along with new op-eds, thoughts and responses from the HuffPost community. Watch the talk above, read the blog post and tell us your thoughts below. Become part of the conversation!

Watch Beau Lotto's talk above on optical illusions and how information can differ depending on perception.

The year was 1943, and the Pentagon had a problem. They'd poured millions of dollars into a new voice encryption system -- dubbed the "X System" -- but no one was certain how secure it was. So the top brass called in Claude Shannon to analyze their code and -- if all went well -- to prove that it was mathematically unbreakable.

Shannon was a new breed of mathematician: A specialist in what's known today as information theory. To Shannon and his fellow theorists, information was something separate from the letters, numbers and facts it represented. Instead, it was something more abstract; more mathematical: in a word, it was non-redundancy.

As Beau Lotto explains in his presentation, we're hallucinating reality all the time -- but we only take notice when our hallucinations fail to make accurate predictions. -- Ben Thomas

Take, for example, the sequence of letters spelling out "Let's crack the codes." It's got a high level of redundancy -- not all its letters are essential for getting its message across. As long as you've got some practice reading English, you can look at a shorter, less-redundant sequence like "Lt's crck th cdes" and fill in the missing sounds. Along the same lines, Hebrew and Arabic speakers can read the vowel-free written forms of their languages just fine. Our brains are surprisingly talented at picking up patterns, filling in blanks, and ignoring redundant data -- only when we're uncertain about how to fill in a blank does information become... well, informative.

Shannon's non-redundancy idea isn't just handy for cracking codes, though -- today, it's responsible for most of what you see on the Internet. JPEG image compression, for instance, throws out most of an image's data, and we rarely notice anything's missing - our brains' visual system smooths out the rough spots. Same goes for MP3 compression, and for the Flash video encoding used on YouTube. Ever since Shannon's day, information theorists have been refining their techniques, drilling closer and closer to the bare minimum of information required to convince us we're not missing anything. (You might say those ancient Hebrew and Arabic scribes were a few thousand years ahead of their time.)

2012-11-11-Felis_silvestris_silvestris_small_gradual_decrease_of_quality.png

Data compression isn't just digital, either -- in fact, it's hardwired into our brains, from the neurons up. As Beau Lotto shows us in his TEDTalk above, every color we perceive is dependent on its context: What other colors surround it? Is it in light or in shadow? How's the light tinted? And what's true for light holds true for sound, too -- as I explain in this article, your brain gets so pumped up about rhythm that it actually hallucinates missing beats. Oh, and if you're in the mood for something extra weird today, check out Oliver Sacks' TEDTalk on Charles Bonnet syndrome -- a brain disorder that makes people hallucinate vivid scenes from tiny stray nerve signals.

In light of all this, it's hard to escape the inventor Ray Kurzweil's conclusion: "We don't actually see things [at all]; we hallucinate them in detail from low-resolution cues." As Beau Lotto explains in his presentation, we're hallucinating reality all the time -- but we only take notice when our hallucinations fail to make accurate predictions; when we think we're certain of something that's actually not so certain, and our brains have to hunt down new information in order to make better predictions.

Claude Shannon once said, "Information is the resolution of uncertainty." The more certain we are in our hallucinations, the less information we think we need -- and the less open to new information we become. Beau Lotto finishes his talk on a similar note. "Only through uncertainty," he says, "is there potential for understanding."

Luckily for the Allies in World War II, Shannon had just the right kind of understanding for the job. After proving the Pentagon's X System mathematically uncrackable, he helped lay the groundwork for the next generation of military codes. His most enduring legacy, though, isn't the codes he created, but the idea behind them: Only in uncertainty do we realize information's value.

Ideas are not set in stone. When exposed to thoughtful people, they morph and adapt into their most potent form. TEDWeekends will highlight some of today's most intriguing ideas and allow them to develop in real time through your voice! Tweet #TEDWeekends to share your perspective or email tedweekends@huffingtonpost.com to learn about future weekend's ideas to contribute as a writer.

Popular in the Community

Close

What's Hot