'Curiosity' Night PHOTOS: Mars Rover's First Images Of Martian Surface In Darkness

PHOTOS: First Glimpse Of Mars After Dark
|
Open Image Modal

The little rover that could has been working the graveyard shift. NASA's Curiosity rover has taken its first pics of Mars at night.

The ultraviolet and white-light images--snapped by the rover's Mars Hand Lens Imager (MAHLI) on Jan. 22--spotlight a Martian rock NASA calls "Sayunei." According to the space agency, the rover's front-left wheel had scuffed the rock to provide dust-free materials to examine.

"The purpose of acquiring observations under ultraviolet illumination was to look for fluorescent minerals," MAHLI principal investigator Ken Edgett, of Malin Space Science Systems in San Diego, said in a written statement. "The science team is still assessing the observations. If something looked green, yellow, orange or red under the ultraviolet illumination, that'd be a more clear-cut indicator of fluorescence."

The Martian rock "Sayunei," illuminated by white-light LEDs (light emitting diodes), is part of the first set of nighttime images taken by the MAHLI camera on NASA's Mars rover Curiosity in the "Yellowknife Bay" area of Mars' Gale Crater.

These nighttime photos were taken near where the rover team plans to soon use Curiosity to drill into Martian rock. Drilling would allow further study of the Red Planet's mineral and chemical makeup.

Our 2024 Coverage Needs You

As Americans head to the polls in 2024, the very future of our country is at stake. At HuffPost, we believe that a free press is critical to creating well-informed voters. That's why our journalism is free for everyone, even though other newsrooms retreat behind expensive paywalls.

Our journalists will continue to cover the twists and turns during this historic presidential election. With your help, we'll bring you hard-hitting investigations, well-researched analysis and timely takes you can't find elsewhere. Reporting in this current political climate is a responsibility we do not take lightly, and we thank you for your support.

to keep our news free for all.

Support HuffPost

Before You Go

Mars Rover Curiosity Images
Panorama of Curiosity's Belly Check (01 of16)
Open Image Modal
This view of the lower front and underbelly areas of NASA's Mars rover Curiosity combines nine images taken by the rover's Mars Hand Lens Imager (MAHLI) during the 34th Martian day, or sol, of Curiosity's work on Mars (Sept. 9, 2012).Curiosity's front Hazard-Avoidance cameras appear as a set of four blue eyes at the top center of the portrait. Fine-grain Martian dust can be seen adhering to the wheels, which are about 16 inches (40 centimeters) wide and 20 inches (50 centimeters) in diameter. The bottom of the rover is about 26 inches (66 centimeters) above the ground. On the horizon at the right is a portion of Mount Sharp, with dark dunes at its base.The camera is in the turret of tools at the end of Curiosity's robotic arm. The Sol 34 imaging by MAHLI was part of a week-long set of activities for characterizing the movement of the arm in Mars conditions. As this was a test to gain new information about operation of the instrument, the MAHLI team noted that two of the nine images acquired for this mosaic were not in focus.The main purpose of Curiosity's MAHLI camera is to acquire close-up, high-resolution views of rocks and soil at the rover's Gale Crater field site. The camera is capable of focusing on any target at distances of about 0.8 inch (2.1 centimeters) to infinity, providing versatility for other uses, such as views of the rover itself from different angles. (NASA) (credit:NASA/JPL-Caltech/Malin Space Science Systems)
Rover Takes Self Portrait(02 of16)
Open Image Modal
On Sol 32 (Sept. 7, 2012) the Curiosity rover used a camera located on its arm to obtain this self portrait. The image of the top of Curiosity's Remote Sensing Mast, showing the Mastcam and Chemcam cameras, was acquired by the Mars Hand Lens Imager (MAHLI). The angle of the frame reflects the position of the MAHLI camera on the arm when the image was taken. The image was acquired while MAHLI's clear dust cover was closed. (NASA) (credit:NASA/JPL-Caltech/Malin Space Science Systems)
Wheels and a Destination(03 of16)
Open Image Modal
This view of the three left wheels of NASA's Mars rover Curiosity combines two images that were taken by the rover's Mars Hand Lens Imager (MAHLI) during the 34th Martian day, or sol, of Curiosity's work on Mars (Sept. 9, 2012). In the distance is the lower slope of Mount Sharp.The camera is located in the turret of tools at the end of Curiosity's robotic arm. The Sol 34 imaging by MAHLI was part of a week-long set of activities for characterizing the movement of the arm in Mars conditions. The main purpose of Curiosity's MAHLI camera is to acquire close-up, high-resolution views of rocks and soil at the rover's Gale Crater field site. The camera is capable of focusing on any target at distances of about 0.8 inch (2.1 centimeters) to infinity, providing versatility for other uses, such as views of the rover itself from different angles. (NASA) (credit:NASA/JPL-Caltech/Malin Space Science Systems)
Belly Check for Curiosity(04 of16)
Open Image Modal
This view of the lower front and underbelly areas of NASA's Mars rover Curiosity was taken by the rover's Mars Hand Lens Imager (MAHLI) during the 34th Martian day, or sol, of Curiosity's work on Mars (Sept. 9, 2012). Also visible are the hazard avoidance cameras on the front of the rover.MAHLI is located in the turret of tools at the end of Curiosity's robotic arm. The Sol 34 imaging by MAHLI was part of a week-long set of activities for characterizing the movement of the arm in Mars conditions. The main purpose of Curiosity's MAHLI camera is to acquire close-up, high-resolution views of rocks and soil at the rover's Gale Crater field site. The camera is capable of focusing on any target at distances of about 0.8 inch (2.1 centimeters) to infinity, providing versatility for other uses, such as views of the rover itself from different angles. (NASA) (credit:NASA/JPL-Caltech/Malin Space Science Systems )
Calibration Target for Curiosity's Arm Camera(05 of16)
Open Image Modal
his view of the calibration target for the Mars Hand Lens Imager (MAHLI) aboard NASA's Mars rover Curiosity combines two images taken by that camera during the 34th Martian day, or sol, of Curiosity's work on Mars (Sept. 9, 2012). Part of Curiosity's left-front and center wheels and a patch of Martian ground are also visible. The camera is in the turret of tools at the end of Curiosity's robotic arm. Its calibration target is on the rover body near the base of the arm. The Sol 34 imaging by MAHLI was part of a week-long set of activities for characterizing the movement of the arm in Mars conditions. MAHLI has adjustable focus. The camera took two images with the same pointing: one with the calibration target in focus and one with the wheel and Martian ground in focus. The view here combines in-focus portions from these shots.The calibration target for the Mars Hand Lens Imager (MAHLI) instrument includes color references, a metric bar graphic, a 1909 VDB Lincoln penny, and a stair-step pattern for depth calibration. The penny is a nod to geologists' tradition of placing a coin or other object of known scale as a size reference in close-up photographs of rocks, and it gives the public a familiar object for perceiving size easily when it will be viewed by MAHLI on Mars.The new MAHLI images show that the calibration target has a coating of Martian dust on it. This is unsurprising - the target was facing directly toward the plume of dust stirred up by the sky crane's descent engines during the final phase of the 6 August 2012 landing. (NASA) (credit:NASA/JPL-Caltech/Malin Space Science Systems )
Lincoln Penny on Mars in Camera's Calibration Target(06 of16)
Open Image Modal
The penny in this image is part of a camera calibration target on NASA's Mars rover Curiosity. The Mars Hand Lens Imager (MAHLI) camera on the rover took this and other images of the MAHLI calibration target during the 34th Martian day, or sol, of Curiosity's work on Mars (Sept. 9, 2012). The image was acquired with MAHLI at a distance of 5 centimeters (2 inches). MAHLI can acquire images of even higher resolution and can be positioned as close as 2.5 centimeters (about 1 inch); however, as this is the first checkout of the robotic arm, it was decided not to attempt to place the MAHLI at its closest focus distance during this test. The image shows that the calibration target has a coating of Martian dust on it. This is unsurprising - the target was facing directly toward the plume of dust stirred up by the sky crane's descent engines during the final phase of the 6 August 2012 landing.The penny is a nod to geologists' tradition of placing a coin or other object of known scale as a size reference in close-up photographs of rocks, and it gives the public a familiar object for perceiving size easily when it will be viewed by MAHLI on Mars.The specific coin, provided by MAHLI's principal investigator, Ken Edgett, is a 1909 "VDB" penny. That was the first year Lincoln pennies were minted and the centennial of Abraham Lincoln's birth. The VDB refers to the initials of the coin's designer, Victor D. Brenner, which are on the reverse side. Brenner based the coin's low-relief portrait of Lincoln on a photograph taken Feb. 9, 1864, by Anthony Berger in the Washington, D.C. studio of Mathew Brady.The calibration target for the Mars Hand Lens Imager (MAHLI) instrument also includes a "Joe the Martian" character, color references, a metric bar graphic, and a stair-step pattern for depth calibration. The MAHLI adjustable-focus, color camera at the end of Curiosity's robotic arm can be used for taking extreme close-ups of rocks and soil on Mars, as well as images from greater distances.The Joe the Martian character appeared regularly in a children's science periodical, "Red Planet Connection," when Edgett directed the Mars outreach program at Arizona State University, Tempe, in the 1990s. Joe was created earlier, as part of Edgett's schoolwork when he was 9 years old and NASA's Mars Viking missions, launched in 1975, were inspiring him to dream of becoming a Mars researcher. (NASA) (credit:NASA/JPL-Caltech/Malin Space Science Systems)
(07 of16)
Open Image Modal
This handout image provided by NASA/JPL-Caltech/Univ. of Arizona, shows tracks from the first drives of NASA's Curiosity rover are visible in this image captured by the High-Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The rover is seen where the tracks end. The image's color has been enhanced to show the surface details better. The two marks seen near the site where the rover landed formed when reddish surface dust was blown away by the rover's descent stage, revealing darker basaltic sands underneath. Similarly, the tracks appear darker where the rover's wheels disturbed the top layer of dust. (AP Photo/NASA/JPL-Caltech/Univ. of Arizona) Observing the tracks over time will provide information on how the surface changes as dust is deposited and eroded. (credit:AP)
(08 of16)
Open Image Modal
This handout photo provided by NASA/JPL-Caltech shows the surroundings of the location where NASA Mars rover Curiosity arrived on Sept. 4, 2012. It is a mosaic of images taken by Curiosity's Navigation Camera (Navcam) following the Sol 29 drive of 100 feet. Tracks from the drive are visible in the image. For scale, Curiosity leaves parallel tracks about 9 feet apart. The rover Curiosity is making its mark on Mars. Its tracks are big enough to be seen from space. In just one month, the car-sized rover has driven 368 feet on the red planet. That's slightly more than the length of a football field. Curiosity's slightly zig-zaggy tire tracks were photographed from a NASA satellite circling Mars and also from the rover's rear-facing cameras. Curiosity landed on Aug. 5. (AP Photo/NASA/JPL-Caltech) The panorama is centered to the north-northeast, with south-southwest at both ends. (credit:AP)
(09 of16)
Open Image Modal
This image released by NASA on Wednesday Aug. 29,2012 shows Curiosity's wheels after it made its third drive on Mars. The six-wheel rover landed on Aug. 5, 2012 on a mission to study the red planet's environment. (AP Photo/NASA) (credit:AP)
(10 of16)
Open Image Modal
In this image released by NASA on Monday, Aug. 27, 2012, a chapter of the layered geological history of Mars is laid bare in this color image from NASA's Curiosity rover showing the base of Mount Sharp, the rover's eventual science destination. The image is a portion of a larger image taken by Curiosity's 100-millimeter Mast Camera on Aug. 23, 2012. Scientists enhanced the color in one version to show the Martian scene under the lighting conditions we have on Earth, which helps in analyzing the terrain. The pointy mound in the center of the image, looming above the rover-sized rock, is about 1,000 feet (300 meters) across and 300 feet (100 meters) high. (AP Photo/NASA/JPL-Caltech/MSSS) (credit:AP)
First Image From Curiosity's Arm Camera With Dust Cover Open(11 of16)
Open Image Modal
The reclosable dust cover on Curiosity's Mars Hand Lens Imager (MAHLI) was opened for the first time during the 33rd Martian day, or sol, of the rover's mission on Mars (Sept. 8, 2012), enabling MAHLI to take this image.The level of detail apparent in the image shows that haziness in earlier MAHLI images since landing was due to dust that had settled on the dust cover during the landing.The patch of ground shown is about 34 inches (86 centimeters) across. The size of the largest pebble, near the bottom of the image, is about 3 inches (8 centimeters). Notice that the ground immediately around that pebble has less dust visible (more gravel exposed) than in other parts of the image. The presence of the pebble may have affected the wind in a way that preferentially removes dust from the surface around it. (NASA)
NASA Curiosity Rover Images(12 of16)
Open Image Modal
ON MARS - AUGUST 28: In this handout provided by NASA/JPL-Caltech, NASA's Curiosity Rover's Navigation camera shows the pebble-covered surface of Mars. Tracks from the first drive on August 22, 2012 lead away from the landing site and include the donut at right. The second donut was made during the rover's second drive on August 27, 2012. The landing site is at the far right. (Photo by NASA/JPL-Caltech via Getty Images) (credit:Getty Images)
(13 of16)
Open Image Modal
In this image released by NASA on Monday, Aug. 27, 2012, An image from a test series used to characterize the 100-millimeter Mast Camera on NASA's Curiosity rover taken on Aug. 23, 2012, looking south-southwest from the rover's landing site. The 100-millimeter Mastcam has three times better resolution than Curiosity's 34-millimeter Mastcam, though it has a narrower field of view. The gravelly area around Curiosity's landing site is visible in the foreground. Farther away, about a third of the way up from the bottom of the image, the terrain falls off into a depression (a swale). Beyond the swale, in the middle of the image, is the boulder-strewn, red-brown rim of a moderately-sized impact crater. Farther off in the distance, there are dark dunes and then the layered rock at the base of Mount Sharp. Some haze obscures the view, but the top ridge, depicted in this image, is 10 miles (16.2 kilometers) away. Scientists enhanced the color in one version to show the Martian scene under the lighting conditions we have on Earth, which helps in analyzing the terrain. (AP Photo/NASA/JPL-Caltech/MSSS) (credit:AP)
(14 of16)
Open Image Modal
In this image released by NASA on Monday, Aug. 27, 2012, an image taken by the Mast Camera (MastCam) highlights the geology of Mount Sharp, a mountain inside Gale Crater, where the rover landed. Prior to the rover's landing on Mars, observations from orbiting satellites indicated that the lower reaches of Mount Sharp, below the line of white dots, are composed of relatively flat-lying strata that bear hydrated minerals. Those orbiter observations did not reveal hydrated minerals in the higher, overlying strata. The MastCam data now reveal a strong discontinuity in the strata above and below the line of white dots, agreeing with the data from orbit. Strata overlying the line of white dots are highly inclined (dipping from left to right) relative to lower, underlying strata. The inclination of these strata above the line of white dots is not obvious from orbit. This provides independent evidence that the absence of hydrated minerals on the upper reaches of Mount Sharp may coincide with a very different formation environment than lower on the slopes. The train of white dots may represent an "unconformity," or an area where the process of sedimentation stopped. (AP Photo/NASA/JPL-Caltech/MSSS) (credit:AP)
(15 of16)
Open Image Modal
In this image released by NASA on Monday, Aug. 27, 2012, a chapter of the layered geological history of Mars is laid bare in this color image from NASA's Curiosity rover showing the base of Mount Sharp, the rover's eventual science destination. The image is a portion of a larger image taken by Curiosity's 100-millimeter Mast Camera on Aug. 23, 2012. Scientists enhanced the color in one version to show the Martian scene under the lighting conditions we have on Earth, which helps in analyzing the terrain. The pointy mound in the center of the image, looming above the rover-sized rock, is about 1,000 feet (300 meters) across and 300 feet (100 meters) high. (AP Photo/NASA/JPL-Caltech/MSSS) (credit:AP)
(16 of16)
Open Image Modal
In this image released by NASA on Monday, Aug. 27, 2012, a photo taken by the Mast Camera (MastCam) highlights the geology of Mount Sharp, a mountain inside Gale Crater, where the rover landed. Prior to the rover's landing on Mars, observations from orbiting satellites indicated that the lower reaches of Mount Sharp, below the line of white dots, are composed of relatively flat-lying strata that bear hydrated minerals. Those orbiter observations did not reveal hydrated minerals in the higher, overlying strata. The MastCam data now reveal a strong discontinuity in the strata above and below the line of white dots, agreeing with the data from orbit. Strata overlying the line of white dots are highly inclined (dipping from left to right) relative to lower, underlying strata. The inclination of these strata above the line of white dots is not obvious from orbit. This provides independent evidence that the absence of hydrated minerals on the upper reaches of Mount Sharp may coincide with a very different formation environment than lower on the slopes. The train of white dots may represent an "unconformity," or an area where the process of sedimentation stopped. (AP Photo/NASA/JPL-Caltech/MSSS) (credit:AP)