'Tatooine' Planets: Worlds With Extra Suns Have Odd Orbits, Study Suggests

Real-World 'Tatooine' Planets May Have Weird Orbits
Open Image Modal

By: Charles Q. Choi
Published: 11/14/2012 01:12 PM EST on SPACE.com

The more stars a system of alien worlds starts with, the more likely those planets will orbit those stars at odd tilts, scientists say.

The discovery, based on a study unveiled today (Nov. 14), suggests that even Earth's own sun may have had a companion star early in its development.

In recent years, astronomers have detected hundreds of exoplanets — worlds circling distant stars. Many of these are "hot Jupiters" — gas giants like Jupiter or Saturn that are closer to their stars than Mercury is to the sun.

Researchers had thought hot Jupiters arose when giant planets were dragged inward by protoplanetary disks of gas and dust falling toward stars. However, this idea was recently cast into doubt by the surprising discovery that a major fraction of hot Jupiters have orbits that are tilted in respect to their stars' rotation.

Stars all spin, just as Earth's does, and their worlds often line up with this spin — they orbit around the equators of their stars and revolve in the same direction. However, sometimes alien planets have misaligned orbits instead, ones that are at slight or even sharp angles around their stars. The orbits of some exoplanets are so far tilted that they are actually backwards — they move in retrogradeorbits in exactly the opposite direction of their stars' spin.

Scientists had thought if hot Jupiters were dragged toward their stars by protoplanetary disks, they would all end up in relatively normal orbits around the equators of their stars. However, astronomers recently discovered that a whopping 25 to 50 percent of these planets actually may have misaligned orbits.

"The misalignments seemed to point towards a much more volatile, violent evolutionary path for hot Jupiters," said study author Konstantin Batygin, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics.

For instance, perhaps it was a gravitational tug of war between exoplanets that hurled some inward at their stars. Still, it seemed unlikely such processes were responsible for all these misaligned planets.

"A crude and oversimplified analogy is taking a machine gun, shooting in every direction possible, and hitting the correct target about 1 percent of the time," Batygin said. "Surely not impossible, but it seems unlikely."

Now Batygin has discovered protoplanetary disks can indeed produce such tilted orbits if these systems each harbored multiple stars. [Photos: Alien Planet With Twin Suns Found]

Although the solar system has only one sun, most stars like Earth's sun are binaries— two stars orbiting each other as a pair. Increasingly, astronomers are discovering planetary systems with twin suns (like Luke Skywalker's fictional home planet Tatooine in "Star Wars"). There are also many three-star triples in the universe, at least one of which is known to host planets, and the number of stars a system has can even climb as high as seven.

Through computer modeling, Batygin found that the complex system of gravitational pulls that binary stars exert on protoplanetary disks would disrupt them enough to misalign the disks. He added that the more stars a system has, the more likely its planets orbits would be tilted.

This idea does not require that a system have multiple stars for billions of years, Batygin added.

"It is generally believed that 85 to 100 percent of stars form as multiples," he said. Many times, stars then get stripped from these systems during the first 1 million to 10 million years of their lifetimes.

Batygin noted the orbital plane of the solar system's planets is misaligned from the sun's equatorial plane by 7 degrees. Given this skew, "I think it is safe to say that the solar system falls into the misaligned category." In other words, the sun once may have had a companion star very early in its history.

Future research can analyze other details about the interactions between planets, their stars and protoplanetary disks. "For instance, the magnetic coupling between the disk and the host star should be looked at more carefully," Batygin said.

Batygindetails his findings in the Nov. 15 issue of the journal Nature.

Follow SPACE.com on Twitter @Spacedotcom. We're also on Facebook and Google+.

Copyright 2012 SPACE.com, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Our 2024 Coverage Needs You

As Americans head to the polls in 2024, the very future of our country is at stake. At HuffPost, we believe that a free press is critical to creating well-informed voters. That's why our journalism is free for everyone, even though other newsrooms retreat behind expensive paywalls.

Our journalists will continue to cover the twists and turns during this historic presidential election. With your help, we'll bring you hard-hitting investigations, well-researched analysis and timely takes you can't find elsewhere. Reporting in this current political climate is a responsibility we do not take lightly, and we thank you for your support.

to keep our news free for all.

Support HuffPost

Before You Go

Artists' Conceptions Of Extrasolar Planets
New Super-Earth Discovered 39 Light-Years From Earth(01 of12)
Open Image Modal
In April 2017 researchers at the Harvard-Smithsonian Center for Astrophysics CfA announced the discovery of a new super-Earth designated LHS 1140b orbiting the habitable zone of a small red dwarf star LHS 1140 about 39 light-years away Its 42 light-years from our sun to the nearest star Proxima Centauri This is an artist impression of the star LHS 1140 and the possible super-Earth planet which shows early indications of habitability (credit:M Weiss / CfA)
Seven Earth-Sized Planets Around One Star(02 of12)
Open Image Modal
On Feb. 22, 2017, NASA announced the discovery of seven Earth-sized planets orbiting a single star -- TRAPPIST-1 an ultra-cool dwarf sun in the constellation Aquarius just 39 light-years away This artists concept appeared on the cover of the journal Nature on Feb. 23, 2017. (credit:NASA/JPL-Caltech)
Closest Exoplanet To Earth -- August 2016(03 of12)
Open Image Modal
On Aug. 24, 2016, the European Southern Observatory announced the confirmation of the closest exoplanet to Earth. This illustration shows Proxima b, which orbits its parent star Proxima Centauri, the closest sun to Earth's sun. Proxima b lies within its sun's habitable zone, strongly suggesting the planet has liquid water on its surface. (credit:PHL UPR Arecibo ESO)
Proxima b Exoplanet Orbits Red Dwarf Star(04 of12)
Open Image Modal
Artist's impression of exoplanet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB also appears in the image between the planet and Proxima Centauri. (credit:ESOM Kornmesser)
Illustration of Proxima b Surface Features(05 of12)
Open Image Modal
Artist impression shows a view of the surface of planet Proxima b, orbiting the red dwarf star Proxima Centauri, the closest star to our solar system. The double star Alpha Centauri can also be seen to the upper right of Proxima Centauri. (credit:ESOM Kornmesser)
Super-Earth Exoplanet 55 Cancri e(06 of12)
Open Image Modal
In March 2016, NASA announced the discovery of a lava-loaded super-Earth called 55 Cancri e -- twice the size of our own planet but eight times as dense. It's so close to its star that a year lasts only 18 hours. Just 40 light-years away, 55 Cancri e may also be tidally locked to its sun the way the moon is to Earth. This artist's impression shows 55 Cancri e orbiting its parent star. (credit:NASA/JPL-Caltech)
NASA's Kepler Mission Discovers Planet(07 of12)
Open Image Modal
This Dec. 5, 2011, NASA illustration shows Kepler-22b, a planet known to comfortably circle in the habitable zone of a sun-like star. For the first time, NASA's Kepler mission has confirmed a planet to orbit in a star's habitable zone, the region around a star where liquid water, a requirement for life on Earth, could persist. The planet is 2.4 times the size of Earth, making it the smallest yet found to orbit in the middle of the habitable zone. Clouds could exist in this Earth's atmosphere, as the artist's interpretive illustration depicts. (credit:Ames/JPL-Caltech/NASA via Getty Images)
NASA's Kepler Mission Discovers Planet(08 of12)
Open Image Modal
In this Dec. 5, 2011, NASA illustration, a diagram compares our own solar system to Kepler-22, a star system containing the first 'habitable zone' planet discovered by NASA's Kepler mission. The habitable zone is the sweet spot around a star where temperatures are right for water to exist in its liquid form. Liquid water is essential for life on Earth. The diagram displays an artist's rendering of the planet comfortably orbiting within the habitable zone, similar to where Earth circles the sun. Kepler-22b has a yearly orbit of 289 days. The planet is the smallest known to orbit in the middle of the habitable zone of a sun-like star and is about 2.4 times the size of Earth. (credit:Ames/JPL-Caltech/NASA via Getty Images)
Extrasolar Planet HD 209458 b, Osiris(09 of12)
Open Image Modal
Artist's conception released by NASA of extrasolar planet HD 209458 b, also known as Osiris, orbiting its star in the constellation Pegasus, some 150 light-years from Earth's solar system. Scientists have used an infrared spectrum -- the first ever obtained for an extrasolar planet -- to analyze Osiris' atmosphere, which is said to contain dust but no water. The planet's surface temperature is more than 700 Celsius (1330 Fahrenheit). (credit:Getty)
Planet & Its Parent Star(10 of12)
Open Image Modal
Picture released on Oct. 4, 2006, by the European Space Agency shows an artist's impression of a Jupiter-sized planet passing in front of its parent star. Such events are called transits. When the planet transits the star, the star's apparent brightness drops by a few percent for a short period. Through this technique, astronomers can use the Hubble Space Telescope to search for planets across the galaxy by measuring periodic changes in a star's luminosity. (credit:AFP PHOTO NASA/ESA/K. SAHU (STScI) / Getty)
Hot Jupiter(11 of12)
Open Image Modal
Picture released on Oct. 4, 2006, by the European Space Agency shows an artist's impression of a unique type of exoplanet discovered with the Hubble Space Telescope. This image presents a purely speculative view of what a 'hot Jupiter' (word dedicated to planets so close to their stars with such short orbital periods) might look like. A seam of stars at the center of the Milky Way has shown astronomers that an entirely new class of planets closely orbiting distant suns is waiting to be explored. An international team of astronomers, using a camera aboard NASA's Hubble telescope, delved into a zone of the Milky Way known as the 'galactic bulge,' thus called because it is rich in stars and in the gas and dust which go to make up stars and planets. The finding opens up a new area of investigation for space scientists probing extrasolar planets - planets that orbit stars other than our own. (credit:AFP PHOTO NASA/ESA/K. SAHU (STScI) / Getty)
Iceball Exoplanet(12 of12)
Open Image Modal
This artist's concept depicts an iceball exoplanet designated OGLE-2016-BLG-1195Lb, discovered with a technique called microlensing. (credit:NASA/JPL-Caltech)