Earth's Most Abundant Mineral, Bridgmanite, Finally Shows Its Face

Scientists Get First-Ever Glimpse Of Elusive Mineral
|

Earth's most abundant mineral lies deep in the planet's interior, sealed off from human eyes. Now, scientists for the first time have gotten a glimpse of the material in nature, enclosed inside a 4.5-billion-year-old meteorite. The result: They have characterized and named the elusive mineral.

The new official name, bridgmanite, was approved for the mineral formerly known by its chemical components and crystal structure — silicate-perovskite. The magnesium-silicate mineral was named after Percy Bridgman, a 1946 Nobel Prize-winning physicist, according to the American Geophysical Union blog.

The elusive mineral bridgmanite is shown in a shock melt vein inside a 4.5-billion-year-old meteorite found in Queensland, Australia.

"It is a very exciting discovery," Chi Ma of Caltech and Oliver Tschauner, of the University of Nevada, Las Vegas, told Live Science in an email. "We finally tracked down natural silicate-perovskite (now bridgmanite) in a meteorite after a five-year investigation, and got to name the most abundant mineral on Earth. How cool is that?" [Shine On: Photos of Dazzling Mineral Specimens]

The mineral likely resides beneath Earth's surface in an area called the lower mantle, between the transition zone in the mantle and the core-mantle boundary, or between the depths of416 and 1,802 miles (670 and 2,900 kilometers), scientists said.

Scientists have been searching for the mineral for a long time, because in order to identify a mineral one must know its chemical composition and crystal structure, Ma said.

Researchers found the bridgmanite in a meteorite that had fallen to Earth near the Tenham station in western Queensland, Australia, in 1879. The meteorite, Ma said, is highly shocked, meaning it endured high temperatures and pressures as it slammed into other rocks in space. Those impacts can create shock veins of minerals within the meteorites.

"Scientists have identified high-pressure minerals in its shock-melt veins since 1960s. Now we have identified bridgmanite," Tschauner said, referring to the Tenham meteorite. The meteorite is considered a chondrite, the most common type of meteorite found on Earth; scientists think these meteorites are remnants shed from the original building blocks of planets.

Most meteors (which are called meteorites once they strike Earth) are fragments of asteroids, while others are the cosmic dust discarded by comets. Rarely, meteorites represent impact debris from the moon and from Mars.

Ma and Tschauner used various methods to characterize the extracted mineral, including so-called synchrotron X-ray diffraction mapping and high-resolution scanning electron microscopy.

After five years of work, including multiple experiments, Ma and Tschauner sent their data for review to the International Mineralogical Association's Commission on New Minerals, Nomenclature and Classification (CNMNC), according to the AGU blog. The commission approved the mineral and new name on June 2.

Follow Jeanna Bryner on Twitter and Google+. Follow us @livescience, Facebook & Google+. Original article on Live Science.

Copyright 2014 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Correction: A previous headline on this article that appeared elsewhere on the site misidentified bridgmanite as an element; it is a mineral.

Our 2024 Coverage Needs You

As Americans head to the polls in 2024, the very future of our country is at stake. At HuffPost, we believe that a free press is critical to creating well-informed voters. That's why our journalism is free for everyone, even though other newsrooms retreat behind expensive paywalls.

Our journalists will continue to cover the twists and turns during this historic presidential election. With your help, we'll bring you hard-hitting investigations, well-researched analysis and timely takes you can't find elsewhere. Reporting in this current political climate is a responsibility we do not take lightly, and we thank you for your support.

to keep our news free for all.

Support HuffPost

Before You Go

Prehistoric Insects Found Encased In Amber
(01 of05)
Open Image Modal
Ancient mites: Photomicrographs of the two new species of ancient gall mites in 230-million-year-old amber droplets from northeastern Italy, taken at 1000x magnification. The gall mites were named (left) Triasacarus fedelei and (right) Ampezzoa triassica. (University of Göttingen/A. Schmidt)
(02 of05)
Open Image Modal
Ancient mites: Photomicrographs of the two new species of ancient gall mites in 230-million-year-old amber droplets from northeastern Italy, taken at 1000x magnification. The gall mites were named (left) Triasacarus fedelei and (right) Ampezzoa triassica. (University of Göttingen/A. Schmidt)
(03 of05)
Open Image Modal
Amber drops_1: Typical amber droplets. Researchers screened 70,000 drops, resulting in the three arthropod inclusions. Scale bar: 1 mm. (University of Padova/S. Castelli)
(04 of05)
Open Image Modal
Amber drops 2: Droplets of Italian Triassic amber (University of Padova/S. Castelli)
(05 of05)
Open Image Modal
Amber outcrop: The outcrop in the Dolomite Alps of northeastern Italy where researchers found Triassic-era amber droplets. Two of the researchers can be seen collecting the droplets near the bottom of the formation on the right. (University of Padova/E. Ragazzi)